
RESTful Streams
Building realtime applications with

An approach to building
realtime web apps

2007: Rails 1.2

REST

*(mind blown)

RESTful Rails made for a
clean design pattern that
was easier to test, secure,
and consume as an API

Sensible, lightweight Javascript
libraries like Backbone.js and
Ember.js hit the ground that play
nice with RESTful backends

//Pretty simple stuff...
var user = new User();
user.fetch('/users/1.json');

HTTP Long Polling
// Poll every 10 seconds to keep
the channel model up-to-date.	
setInterval(function() {	
 user.fetch();	
}, 10000);*	

*As seen in the Backbone documentation

It is simple

DB Caches

Highly optimized Rails metal

nginx cache

Pile on the caching!

Redis counter caches

When errors happen,
there are lots of them

Hello,!
A project in your Airbrake account has exceeded the rate limit for
errors.!
!

Project: Rails App!
Account: Long Polling Application!
Max rate per minute: 30!
!

Because this is more than the number of errors allowed per minute
for each project on your plan, some errors are being discarded. This
should not adversely affect the performance of your application.!

Does not work for large
datasets or streams

Rails App Maximus

For larger development teams, !
monolithic apps can slow things down

Decompose app and team
into smaller pieces

Rails App

JSON API

SMS AppDesktop AppMobile Web App

...and sprinkle in some streaming

Rails App

JSON API

SMS AppDesktop AppMobile Web App

Stream

Stream!

?

Socket.IO didn’t feel quite right

• Problems simulating a full-duplex low-latency
socket when using transports other than WS!

• Routing on Channels, not URIs (no “/users/:id”)!

• It felt like “too much” in the wrong areas and “too
little” in the right areas

Meteor

• New to the game, looks very promising in some
areas!

• For our team composition, its too tightly coupled
and would end up becoming monolithic

“What problem am I really
trying to solve?”

Web apps are really great at
persisting data from clients
and serving it up fast, but...

Web apps are lousy at
pushing data from the

server to the client when
something changes

“All I want to do is push resources”

Rails App

Desktop App

Stream

Chart App

Firehose.io
Build realtime web applications

$ gem install firehose
!

Install rabbitmq
!

$ firehose server

How does Firehose.io work?

URLs are the exchange,
Resources are the messages

$ curl "http://127.0.0.1:7474/users/1.json"

Publish
$ curl -X PUT -d "{name: ‘Fred’}" "http://
127.0.0.1:7474/users/1.json"

Subscribe

http://127.0.0.1:7474/users/1?cid=2039
http://127.0.0.1:7474/hi

Publishing from ActiveRecord

require ‘net/http’
!

class User < ActiveRecord::Base
 after_commit do
 req = Net::HTTP::Put.new("/users/#{id}/firehose.json")
 req.body = to_json
 Net::HTTP.start('127.0.0.1', 7474).request(req)
 end
end

Subscribing from Backbone.js

// Backbone.js and Firehose.io
!

var user = new User({
 name: "Freddy Jones
});
!

new Firehose.Client()
 .uri('//users/1.json')
 .message(function(msg){
 return user.set(JSON.parse(msg));
 }).connect();

Current implementation runs on

Thin + RabbitMQ
when 'GET'
 EM.next_tick do
 subscription = Firehose::Subscription.new(cid)
 subscription.subscribe path do |payload|
 subscription.unsubscribe
 env['async.callback'].call([200, {}, [payload]])
 end
 end
 Firehose::Rack::AsyncResponse
!
when 'PUT'
 body = env['rack.input'].read
 Firehose::Publisher.new.publish(path, body)
 [202, {}, []]
!
else
 [501, {}, ["#{method} not supported."]]
end

Transports only include

WebSockets +
HTTP long polling

It hangs off the side so its
Minimally Invasive

Rails App

Desktop App

Firehose.io

Chart App

Firehose.io
Experiments

Authorization Proxy with Goliath

Rails App

Desktop App

Firehose.io

Chart App

Authorization

Different backends
ZMQ, Redis, Erlang, node.js

You can help!

Firehose.io
Get it now at

Join the team at
PollEv.com/jobs

@bradgessler

